From unique technologies to innovative drugs

Successful applications of novel constrained macrocycles in drug discovery
Agenda

- Introduction
- Polyphor Macrocycle Platform
 - Protein Epitope Mimetics (PEMfinder®)
 - MacroFinder®
- Integrated drug discovery process
- Successful examples
 - MacroFinder® example
 - PEM – MacroFinder® crosstalk
 - GPCR antagonist
 - Pin-1
 - PEM example: POL7080, selective Gram negative antibiotic with new mode of action
- Summary
Introduction

Innovation in drug discovery

- Founded in 1996, located in Allschwil near Basle
- Private, research driven BioTech company
- Ca. 100 employees (85% scientists)
- Focus on discovery and development of macrocycle drugs
- Rich and diverse product portfolio at discovery and clinical development stage (3 products)
- Portfolio of research collaborations
Macrocycle platform

Macrocycles are medium size, cyclic molecules complementing chemical space between small molecules and biopharmaceuticals

- Polyphor macrocycles
- Small molecule drugs
- MacroFinder®
- PEMfinder®

100 – 500 MW
Small Molecules

500 - 2’000 MW
Polyphor Macrocycles

10’000 - 200’000 MW
Biopharmaceuticals

(e.g. growth hormone)
Macrocycle platform

Special features of macrocycles

• A macrocycle provides diverse functionality and stereochemical complexity in a **conformationally pre-organized ring structure**;

• Macrocycles are **semi-rigid** compounds. They provide a compromise between structural pre-organization (entropy) and sufficient flexibility to mould to a target surface and maximize binding (**induced fit**);

• Macrocycles can demonstrate **drug-like** physicochemical and pharmacokinetic properties such as solubility, lipophilicity, metabolic stability, cell permeability and bioavailability **beyond the rule of 5**;

• Macrocycles delivered important **drugs** and **clinical stage compounds** (cyclosporin A; erythromycin; daptomycin; rapamycin; ramoplanin; eribulin etc.);

It is Polyphor’s strategy to generate macrocycles which have **natural product-like complexity** and **can be efficiently synthesized** by fully modular assembly of readily available building blocks using high-throughput parallel synthesis and purification.

Transfer natural product complexity to the world of drug discovery
Macrocycle platform

Translation of structural information

PEMfinder®

Lead structures / development candidates

MacroFinder®

PEMphage®

PEM like peptides expressed in phages
Protein Epitope Mimetics (PEM)

The structure of PEM

PEM mimic secondary structure motifs of proteins, such as the β-hairpin and the α-helix.

β-hairpin is the predominant structural motif involved in known protein-protein interactions.

Protein Epitope Mimetics - functional minimizations of proteins
Protein Epitope Mimetics (PEM)

Variables for PEM design

PEM Technology is very versatile - the PEM molecules offer many possibilities of variation.

1. Loop size and sequence: 6-20 AAs
2. Building blocks
 - Encoded amino acids
 - Post-translationally modified amino acids
 - Non-natural amino acids
 - Amino acid mimetics/isosteres
3. Secondary structure stabilizing templates

PEM are synthesized in a parallel format, purified in a high throughput mode and thus efficiently optimized in rapid iterative cycles.
Protein Epitope Mimetics (PEM)

Selected scaffold structures of PEM molecules

- **POL6326 scaffold**
 - (CXCR4 antagonist)

- **POL7080 scaffold**
 - (antibiotic)

- **POL6014 scaffold**
 - (hNE inhibitor)

- **PPI scaffold**
 - (PEM antagonist)

Key functionalities:
- Chemokine receptor modulator
- Protease inhibitor
- Bacterial transporter inhibitor
- Extracellular PPI inhibitor
MacroFinder®

Features of MacroFinder®

- Macrocycles of variable ring size (12-30, typically 12-18; MW: 400-800 Da);
- Modular design; several privileged structural motifs;
- Semi-rigid backbone conformations induced by built-in structural constraints;
- High degree of conformational fine tuning possible through variation of ring size and stereochemistry of modular building blocks;
- Low energy conformations of most scaffolds was determined by 2D NMR;
- Efficient production by automated parallel synthesis and purification;
- MacroFinder® molecules show natural product-like structural complexity but exhibit small-molecule-like ADMET properties, such as cell penetration and oral bioavailability;
- The MacroFinder® library consists currently of >13’000 single purified compounds based on diverse scaffolds.
MacroFinder® contains a broad structural diversity of macrocycles exhibiting biological activities on a variety of different target classes.
Integrated drug discovery process

Automated hit expansion and HtL optimization on solid support

Parallel synthesis on 576 cpds arrays.
Output: > 1.5 mg per macrocycle,
 production time: 4-5 weeks.

Split-mix synthesis on 400 - 600 cpds arrays.
Output: > 2 mg per macrocycle,
 production time: 5-6 weeks.

All compounds undergo high throughput prep.
HPLC purification on normal or reverse phase.
Integrated drug discovery process

Cheminformatics, molecular modeling

- Adapted macrocycles-specific molecular modeling and visualization tools and processes relying on biostructural data (X-ray crystallography and high field NMR).
- Proprietary algorithms and tools tailored for design, data and SAR analysis of macrocyclic compounds (PolyMiner, PEMdesigner).

Adapted cheminformatics tools
MacroFinder® conformational analysis

Structural adaptation of the macrocycle upon binding to the target

- Overlay of conformations of MF cpd in solution (NMR, brown) and bound to target (X-ray, blue) show significant differences;

- The conformation of the bound MF molecule is also different from the *in silico* calculated conformation (grey);

- Due to their semi-rigidity MacroFinder® molecules and the dynamic target protein surfaces can adapt their respective conformations in the binding event: *induced fit*.

- Understanding of 3D shape and the conformational dynamics of the macrocycles is key.

Polyphor has a good understanding of the conformational dynamics of MacroFinder® scaffolds - key information for design and optimization.
MacroFinder® example

Successful MF approach to a small molecule undruggable intracellular target

Aim to discover and develop Macrocycle target inhibitors for once daily oral treatment

• Hit family identified by screening of MacroFinder® collection with potency ~250nM
• Successful hit-to-lead chemistry led to several divers promising lead families with
 • Sub nM potency in cell free assay;
 • < 20 nM potency in various functional cellular assays;
 • Excellent selectivity towards all other members of the target family and a large panel of anti-targets;
 • Broad set of compounds with overall matched favorable properties (solubility, permeability, microsomal stability, Cyp-inhibition);
 • Good rodent PK profile with oral bioavailability of ~30%;
 • Successful modulation of key readouts in two relevant rodent models;
 • bRo5: MW >600; PSA 80-100 Å², other parameters compliant with Ro5. Number of HBD’s that can not form intramolecular H-bonds must be minimized!
 • MacroFinder® scaffolds (macrocycles) are generally chemically and metabolically stable. Metabolic liabilities were found in the side-chain groups appended to the macrocyclic scaffold and could be remedied by standard MedChem optimization.
PEM – MacroFinder® crosstalk

PEMfinder®

Translation of structural information

MacroFinder®

PEMphage®
PEM like peptides expressed in phages

Lead structures / clinical candidates
PEM – MacroFinder® crosstalk

PEM design input for MacroFinder® molecules

- Experimental determination of low energy conformations (NMR; X-ray) of PEM and MacroFinder® scaffolds.
- Computational methods capable of reproducing the experimental data.
Pin-1, cis-trans peptidyl prolyl isomerase, intracellular PPI

Pin-1 could become a promising anticancer target

Interacts with mitotic phosphoproteins
Plays an important role in mitotic regulation
Is overexpressed in many human cancers

Recognition site: pSer-Pro or pThr-Pro residues
Specific cis-trans isomerization at Pro
Conformational changes of substrate protein

Pin-1 induced conformational changes rather than the initial phosphorylation *per se* regulate protein function.

* Example 1 (Vernalis):
 $IC_{50} = 0.83 \mu M$
Blocked proliferation of PC3 prostate cancer cells;
$GI_{50} = 13 \mu M$

** Example 2 (Pfizer):
 $K_{i} = 6 nM$
inactive in whole cell assay

PEM – MacroFinder® crosstalk

PEM design input for MacroFinder® molecules for Pin-1

Cyclic peptide (IC$_{50}$ ~ 0.5 µM) bound to Pin-1 (full-length, single mutant (R14A)) determined @ 1.7Å.

Initial MacroFinder® screening hit (IC$_{50}$ ~ 80 µM) bound to Pin-1 determined @ 1.7Å.

MacroFinder® lead designed with input from structure 1 with two optimization cycles (IC$_{50}$ ~ 100 nM) bound to Pin-1 @ 1.7Å

Lead family today: 2 nM – 10 nM in Pin-1 enzymatic assay, fully selective against Cyclophilin A and FKBP12 GI$_{50}$ 0.5 - 3 µM on several cancer cell lines

X-ray structures of PEMfinder® and MacroFinder® hits generate valuable input for the design of focused MacroFinder® libraries
PEM example: POL7080, from discovery to the clinic

The Infectious Disease Society of America (IDSA) released a “hit list” of the six top priority, most dangerous drug-resistant microbes:

Gram-negative
- *Pseudomonas aeruginosa*
- *Escherichia coli*
- *Klebsiella species*
- *Acinetobacter baumannii*

Gram-positive
- Methicillin-resistant *S. aureus* (MRSA)
- Vancomycin-resistant *Enterococcus* (VRE)

POL7080: from discovery to the clinic

POL7080, new mode of action antibiotic against Gram-negative bacteria

Currently in Phase II clinical development

POL7080: from discovery to the clinic

Conformational stability is essential for antibacterial activity

<table>
<thead>
<tr>
<th>LB-01 (MIC = 0.01 μg/mL; Pa ATCC27853)</th>
<th>LB-02 (MIC > 32 μg/mL; Pa ATCC27853)</th>
</tr>
</thead>
<tbody>
<tr>
<td>well ordered β-hairpin conformation</td>
<td>highly disordered conformation</td>
</tr>
</tbody>
</table>

Only the stable conformers are active towards *Pseudomonas aeruginosa*
POL7080: from discovery to the clinic

A photoaffinity labeled analogue binds specifically to LptD

For identification, proteins extracted from the outer membrane were separated on 2D SDS-PAGE/IEF gels, and analyzed by in-gel protease digestion and MALDI-MS/MS.

No labeling observed with PARES1

N. Srinivas et al. Science \textbf{2010}, \textit{327}, 1010-1013
POL7080: from discovery to the clinic

LptD translocates LPS to the cell surface

![Diagram showing LptD translocating LPS]

LptD and other β-barrel transporters are conserved in most Gram-negative bacteria – the area has become a “hot” research topic

Broad spectrum Gram negative research program

POL7080, new mode of action antibiotic against Gram-negative bacteria

Protegrin I → POL0067 → POL6137 → POL7001 → POL7080

Pseudomonas specific! PK/ADMET optimization

~ 300 analogues

POL0067 → POL6137 → POL7001 → POL7080

Plasma stability

POL7080

POL7001

~ 500 analogues

~ 700 analogues

Currently in Phase II clinical development
Broad spectrum Gram negative research program

MIC (µg/mL) against recent clinical isolates

<table>
<thead>
<tr>
<th></th>
<th>P0194999</th>
<th>P0211386</th>
<th>P0239449</th>
<th>P0239743</th>
<th>Colistin</th>
<th>Gentamicin</th>
<th>Tobramycin</th>
<th>Ciprofloxacin</th>
<th>Ceftazidime</th>
<th>Ceftriaxone</th>
<th>Imipenem</th>
<th>Meropenem</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. pneumoniae SSI3010</td>
<td>0.5</td>
<td>0.25</td>
<td>0.125</td>
<td>0.125</td>
<td>0.5</td>
<td>0.25</td>
<td>0.25</td>
<td>≤0.06</td>
<td>0.5</td>
<td>≤0.06</td>
<td>0.5</td>
<td>≤0.06</td>
</tr>
<tr>
<td>K. pneumoniae 400455</td>
<td>0.25</td>
<td>0.25</td>
<td>0.125</td>
<td>0.25</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>K. pneumoniae 501326</td>
<td>0.25</td>
<td>0.25</td>
<td>0.125</td>
<td>0.25</td>
<td>64</td>
<td>64</td>
<td>16</td>
<td>16</td>
<td>64</td>
<td>64</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>K. pneumoniae 402006</td>
<td>4</td>
<td>4</td>
<td>>8</td>
<td>2</td>
<td>64</td>
<td>64</td>
<td>16</td>
<td>>64</td>
<td>>64</td>
<td>>64</td>
<td>64</td>
<td>>64</td>
</tr>
<tr>
<td>P. aeruginosa 403000</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>64</td>
<td>16</td>
<td>0.25</td>
<td>>64</td>
<td>>64</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>P. aeruginosa 504871</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>0.5</td>
<td>0.5</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>32</td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td>P. aeruginosa 401190</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>64</td>
<td>64</td>
<td>32</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>E. coli 401808</td>
<td>1</td>
<td>0.5</td>
<td>0.25</td>
<td>0.125</td>
<td>64</td>
<td>>64</td>
<td>>64</td>
<td>>64</td>
<td>>64</td>
<td>>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>E. coli 926415</td>
<td>0.5</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>8</td>
<td>>64</td>
<td>32</td>
<td>64</td>
<td>32</td>
<td>>64</td>
<td>0.5</td>
<td>≤0.06</td>
</tr>
<tr>
<td>A. baumannii 431941</td>
<td>2</td>
<td>1</td>
<td>0.25</td>
<td>0.06</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>A. baumannii 919656</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.5</td>
<td>16</td>
<td>>64</td>
<td>>64</td>
<td>>64</td>
<td>>64</td>
<td>>64</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>E. cloacae 950265</td>
<td>1</td>
<td>0.5</td>
<td>1</td>
<td>0.25</td>
<td>8</td>
<td>>64</td>
<td>>64</td>
<td>64</td>
<td>>64</td>
<td>>64</td>
<td>1</td>
<td>0.125</td>
</tr>
<tr>
<td>E. cloacae 952508</td>
<td>0.5</td>
<td>0.25</td>
<td>0.5</td>
<td>0.5</td>
<td>8</td>
<td>0.5</td>
<td>0.25</td>
<td>≤0.06</td>
<td>0.5</td>
<td>2</td>
<td>2</td>
<td>≤0.06</td>
</tr>
</tbody>
</table>

Green = Sensitive, Yellow = Intermediate, Red = Resistant
EUCAST clinical breakpoints

Activity significantly improved to a level of standard antibiotics including MDR; PEM antibiotics show no cross-resistance with known antibiotics
Summary

Macrocycles complement the established drug classes biopharmaceuticals and small molecules

- The Polyphor macrocycle platform generates hits on a wide range of extra- and intracellular targets including those where other approaches have failed;

- The focus on in depth understanding of structure and conformations of macrocycles is key to enable transfer of pharmacophors from peptidic PEMfinder® to non-peptidic MacroFinder®;

- In all of our successful projects, the macrocyclic backbone structure forms part of the pharmacophore and not only a scaffold providing correct 3D-vector display;

- Selectivity towards related targets or in safety panels so far has never been an issue. On the contrary, in 2 projects pronounced species selectivity despite high sequence homology for the target was hampering rapid project progress.

- For MacroFinder®, oral bioavailability can be readily (typically 2-3 optimization rounds) achieved with bR5 macrocycles (4 projects to date);

- Phenotypical, whole cell or pathway screening of macrocycles can be very rewarding: Discovery of antimicrobials against Gram negative pathogens with a new mode of action
Acknowledgements

Polyphor

Sophie Barthélémy
David Benzies
Francesca Bernardini
Eric Chevalier
Glenn Dale
Steve DeMarco
Klaus Dembowsky
Philipp Ermert
Christian Bisang
Frank Gombert
Francoise Jung
Alexander Lederer
Anatol Luther
Guillaume Lemercier
Christian Ludin
Daniel Obrecht
Christian Oefner
Said Oumouch
Arnaud Piettre
Barbara Romagnoli
Manuella Schmitt-Billet
Odile Sellier-Kessler
Peter Zbinden
Johann Zimmermann

University of Zurich

John A. Robinson
Kerstin Moehle
Katja Zerbe
Nityalkaljani Srinivas
Martina Werneburg

Support from

FP-7/NABATIVI program;
CTI

Thank you very much for your kind attention!